First of all, we'll notice that 1+(tgx)^2 = 1/(cos x)^2,
from the fundamental formula of trigonometry:
(sin x)^2 +
(cos x)^2 = 1
(sin x)^2/(cos x)^2 + 1 = 1/(cos
x)^2
(tg x)^2 + 1 = 1/(cos
x)^2
Int [(1+(tgx)^2)/tg x]dx=Int dx/(tg x)(cos
x)^2
Now, we can choose the method of
substitution.
tg x = t, so, differentiating, we'll
have:
dx/(cos x)^2 =
dt
Int (1/t)dt = ln t + C = ln (tg x) +
C
No comments:
Post a Comment