(1) (tanθ)/(1-cotθ)+(cotθ)/(1-tanθ)=1+tanθ+cot θ
L.H.S=(tanθ)/(1-cotθ)+(cotθ)/(1-tanθ)
=(sinθ/cosθ)/{1-(cosθ/sinθ)}+(cosθ/sinθ)/{1-(sinθ/cosθ)}
=(sinθ/cosθ)/{(sinθ-cosθ)/sinθ}+(cosθ/sinθ)/{(cosθ-sinθ)/cosθ}
=sin^2 θ/(cosθ[sinθ-cosθ]) + cos^2 θ/(sinθ[cosθ-sinθ])
=sin^2 θ/(cosθ[sinθ-cosθ]) - cos^2 θ/(sinθ[sinθ-cosθ])
=1/(sinθ-cosθ){sin^2 θ/cosθ - cos^2 θ/sinθ}
=1/(sinθ-cosθ){(sin^3 θ - cos^3 θ)/sinθcosθ}
=1/(sinθ-cosθ){[(sinθ - cosθ)(sin^2 θ+sinθcosθ+cos^2 θ)]/sinθcosθ}
=(sin^2 θ+sinθcosθ+cos^2 θ)/sinθcosθ
=sin^2 θ/sinθcosθ + sinθcosθ/sinθcosθ + cos^2 θ/sinθcosθ
=sinθ/cosθ + 1 + cosθ/sinθ
=tanθ+1+cotθ
=1+tanθ+cot θ
=R.H.S
(2) (tan^3 A-1)/(tanA-1)=sec^2 A+tanA
L.H.S=(tan^3 A-1)/(tanA-1)
=([sin^3 A/cos^3 A]-1)/([sinA/cosA]-1)
=(sin^3 A-cos^3 A)/(cos^2 A[sinA-cosA])
={(sinA - cosA)(sin^2 A+sinAcosA+cos^2 A)}/(cos^2 A[sinA-cosA])
=(sin^2 A+sinAcosA+cos^2 A)/cos^2 A
=(sin^2 A+cos^2 A+ sinAcosA)/cos^2 A
=(1+sinAcosA)/cos^2 A [because sin^2 A+cos^2 A=1]
=1/cos^2 A + sinAcosA/cos^2 A
=1/cos^2 A + sinA/cosA
=sec^2 A+tanA
=R.H.S
No comments:
Post a Comment