Before choosing any method of calculation, you have to
multiply and divide the square root with itself.
Int
[sqrt(16-x^2)*sqrt(16-x^2)]dx/sqrt(16-x^2)
Int
(16-x^2)dx/sqrt(16-x^2) = Int 16/sqrt(16-x^2) + Int
(-x^2)/sqrt(16-x^2)
Int 16/sqrt(16-x^2) = 16 arcsin (x/4) +
C
Int (-x^2)/sqrt(16-x^2) we'll solve it by parts method,
choosing f=x and g'(x)=sqrt(16-x^2)dx
Let's see
why:
[sqrt(16-x^2)]' =
[1/sqrt(16-x^2)]*(16-x^2)'
[sqrt(16-x^2)]' = -2x/sqrt
(16-x^2), which is almost what we have in Integral
x*[-x/sqrt(16-x^2)]dx.
The method of integration by parts
is:
Int f*g'=f*g-Int
f'*g
So,
Integral
x*[-x/sqrt(16-x^2)]dx=xsqrt(16-x^2)-Int sqrt
(16-x^2)dx
Integral sqrt(16-x^2)dx=16 arcsin
(x/4)+xsqrt(16-x^2)-Int sqrt (16-x^2)
2Int (16-x^2)dx=16
arcsin (x/4)+xsqrt(16-x^2)
Int
(16-x^2)dx=8arcsin (x/4)+[xsqrt(16-x^2)/2] + C
No comments:
Post a Comment