The point A(-2,1,2)
The plane 3x-2y+5z+1=0
To find a distance between a point and a plane:
The standard plane formula is Ax+By+Cz+D =0
which in our case 3x-2y+5z+1=0
The standard point (x1,y1,z1) = (-2,1,2)
Then the distance d= l Ax1+By1+Cz1+D l/ sqrt(A^2+B^2+C^2)
Then in our case d = l 3(-2)+(-2)(1)+5(2)+1 l/ sqrt(9+4+25)
==> d= l -6-2+10+1 l/ sqrt(38) = 3/sqrt(38) = 3/6.16 = 0.487
No comments:
Post a Comment