To solve
[(9x^2 - 9y^2)/(6x^2y^2)]/[(3x + 3y)/(12x^2y^5)] .
Solution:
We know (a/b)/ (c/d) = ad/(bc)
Rewriting in numerator and denominator form we get: (9x^2-9y^2)(12x^2y^5)/ {(6x^2y^2)(3x+3y)}........(1)
Numerator = (3x+3y)(3x-3y)(1`2x^2y^5), as (a^2-b^2= (a+b)(a-b), wehre a= 3x and b= 3y and a^2-b^2 = 9x^2-9y^2.
Denominator =(3x+3y)(6x^2y^2)
Therefore reducing the expresion's ( at (1) ) numerator and denominator (3x+3y)(6x^2y^2), the HCF of numerator and denominators:
(3x-3y)(2y^3) = 6(x-y)y^3
No comments:
Post a Comment