f(x)= x^2+ax-4
Assume that the roots are x1 and x2
then:
x1^2+ax1-4=0 ....(1)
x2^2+ax2-4=0 ....(2)
add (1) and (2)
==> x1^2+x2^2+ax1+ax2-8=0
==> x1^2+x2^2= 8-a(x1+x2)
but (x1+x2)= -a
==> x1^2+x2^2=8+a^2......(3)
Now we need to calculate the sum of the cubes of the roots:
that means we need x1^3+x2^3
Let us multiply equation (1) with x1 and equation (2) with x2
==> x1^3+ax1^2-4x1=0 .......(4)
==> x2^3+ax2^2-4x2=0 ........(5)
Now let us add (4) and (5)
==> x1^3+ax1^2-4x1+x2^3+ax2^2-4x2=0
==> x1^3+x2^3 = 4x1+4x2-ax1^2-ax2^2
factor the right side:
==> x1^3+x2^3 = 4(x1+x2)-a(x1^2+x2^2)
But from equation (3) we have x1^2+x2^2=8+a^2
==> x1^3+X2^3 = 4(-a)-a(8+a^2)
= -4a-8a-a^3
= -12-a^3
Then x1^3+x2^3= -12-a^3
No comments:
Post a Comment