One method would be to consider the fact that being an addition of two alike functions, we'll transform the addition into a product, in this way:
sin a + sin b = 2sin [(a+b)/2]cos [(a-b)/2]
sin 15 + sin 75 = 2sin[(15+75)/2] cos [(15-75)/2]
sin 15 + sin 75 = 2sin45cos30
sin 15 + sin 75 = 2*[(sqrt2)/2]*[(sqrt3)/2]
sin 15 + sin 75 = sqrt(2*3)/2=sqrt(6)/2
Another manner of solving would be to write the angles:
15 = 45 - 30
75 = 45 + 30
sin (45 - 30) = sin45*cos30 - sin30*cos45
=(sqrt2/2)(sqrt3/2) - sqrt2/4
= (sqrt6 - sqrt2)/4
sin (45 + 30) = sin45*cos30 + sin30*cos45
= (sqrt6 + sqrt2)/4
So,
sin 15 + sin 75 = (sqrt6 - sqrt2+sqrt6 + sqrt2)/4
sin 15 + sin 75 = 2sqrt6/4
sin 15 + sin 75 = sqrt6/2
No comments:
Post a Comment