We find the slope of the given line in the form y = mx + c to find its slope:
3x + 2y = 3
2y = - 3x + 3
y = (-3/2)x = 3
Therefore the slope of the given line is -3/2.
Slope of the a line perpendicular to another is inverse of the slope of first line, multiplied by -1
Therefore slope of perpendicular to given line = -1/(-3/2) = 2/3
Therefore the equation of the perpendicular may be given as:
y = (2/3)x + c
This perpendicular line passes through the point (5, -3). Therefore to get the value of c in its equation we substitute the values of the coordinates of the point in the equation.
- 3 = (2/3)5 + c
- 3 = 10/3 + c
c = - 3 - 10/3 = - 19/3
Substituting this value in equation of perpendicular:
y = (2/3)x - 19/3
Multiplying this equation by -3, and taking all the terms on left hand side we get:
2x - 3y - 19 = 0
No comments:
Post a Comment